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Abstract

The High School Timetabling Problem requires the assignment of times and
resources to events, while sets of required and desirable constraints must
be considered. The most common approach for this problem is to employ
metaheuristic methods. This work presents a matheuristic approach that
combines a Variable Neighbourhood Search algorithm with mathematical
programming-based neighbourhoods for high school timetabling. Compu-
tational experiments on well-known benchmark instances demonstrate the
success of the proposed hybrid approach, which outperforms the standalone
Variable Neighbourhood Search algorithm by far. Additionally, the proposed
algorithm was able to improve 15 out of 17 current best known solutions in
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a very famous benchmark set.
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1. Introduction

The High School Timetabling Problem (HST) consists in assigning times
and resources to events respecting several hard and soft constraints. Some
usual constraints are to respect the availability of teachers, to respect the
limit on lessons of the same class in a day, and to avoid idle times between
activities. The schedule, which is generally made for a week, is repeated
until the end of the class period. Although it is usually referred as HST, the
problem can be defined in such a way that it can be extended to other levels,
such as university courses. Beyond its practical importance, this problem
is NP-Hard [1], which makes it of interest for Operations Research and
Artificial Intelligence communities.

The Third International Timetabling Competition (ITC2011) [2] moti-
vated the development of several approaches to solve this problem. The
competition considered the eXtended Markup Language for High School Ti-
meTabling (XHSTT) format [3], in which several features related to schedul-
ing problems can be properly defined. Nowadays, more than 40 real world
instances, from 12 different countries, are available in this format. They can
be used to evaluate the performance of algorithms for high school/university
timetabling.

In the ITC2011 competition, metaheuristic approaches achieved remark-
able results. The four finalists employed metaheuristics as the main solver
or part of it: GOAL solver [4], the winner of the competition, was a combi-
nation of Simulated Annealing (SA) and Iterated Local Search (ILS); Lectio,
ranked second, employed an Adaptive Large Neighbourhood Search (ALNS)
[5]; HySTT, ranked third, proposed a Hyper-heuristic approach [6]; finally
HFT, ranked fourth, was based on an Evolutionary Algorithm [7].

More recently, the GOAL team released a new solver based on the Vari-
able Neighbourhood Search algorithm [8], Kingston developed a solver based
on his library for handling XHSTT instances [9], and the HySTT team worked
towards an improved version of their Hyper-heuristic approach [10]. In a
different direction, Kristiansen et al. [11] proposed the first integer program-
ming formulation for XHSTT timetabling problems.
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The integration of metaheuristics and mathematical programming ap-
proaches, namely matheuristics, is a growing field in operations research. For
example, some recent works in [12, 13, 14] proposed matheuristics for vehicle
routing, flow shop scheduling, and nurse rostering respectively. Sorensen and
Stidsen [15] presented some preliminary results in matheuristics for XHSTT
timetabling problems. However, no problem-specific neighbourhood was pre-
sented in their work. In this paper, a hybrid approach is proposed, which
applies Variable Neighborhood Search (VNS) at the beginning of the search
and invokes a matheuristic algorithm after VNS stagnation. The intention
behind this approach is to find an interesting balance between exploration
and exploitation, in order to reach better solutions.

The remainder of the paper is organized as follows. The Generalized
High School Timetabling problem and the XHSTT format are described in
Section 2. The proposed algorithm is presented in Section 3. Computational
experiments and results achieved are reported in Section 4. Finally, some
concluding remarks are drawn in Section 5.

2. Generalized Timetabling Problem

In general, the educational timetabling problem consists in assigning
times and resources (teachers, classes and rooms) to events (lectures), while
respecting several constraints given a priori. Examples of usual constraints
are: (i) do not allow a resource to attend more than one event at the same
time; (ii) respect the resources unavailable times, or; (iii) split the events
into sub-events of valid size. Figure 1 presents an example of timetabling
for the resource “5th grade class”, whose events (lectures) are distributed
along 25 different times (time periods). Assuming that an active constraint
demands that the last time of each day should be empty, it is possible to
identify a violation at Wednesday (event “Phis”). The complete timetable
solution is the set of all resource assignments.

There are several problem categories in the context of educational time-
tabling. The most recurrent classifications are High School Timetabling [16],
University Course Timetabling [17] and Student Sectioning [18]. Moreover,
significant differences can be noted in the timetabling requirements of differ-
ent educational institutions, specially from different countries. In practice,
this variety makes it hard to apply an existing solver to a new timetabling
instance – usually it is necessary to hand-code a new solver to the instance,
taking into account its specific requirements. As a consequence, it is often
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Mon Tue Wed Thu Fri

Eng1 Span3 Math1 Chem1 Math3

Eng2 Span4 Math2 Chem2

Span1 Eng3 Bio1 Info1 Math4

Span2 Eng4 Bio2 Info2 Phis2

Phis1

5th grade class

Avoid unavailable times violation: 
    Event Phis is assigned to the last time of Wednesday.

Figure 1: Example of timetable for “5th grade class”.

complicated to compare different solution approaches. The XHSTT format
was proposed for handling such difficulties. This format defines a generic way
to create resources and events, and it allows the specification of 16 different
constraint types, which may be hard, soft or not applicable, depending on the
instance requirements. Any timetabling problem that can be specified using
these 16 constraints is suitable to be solved with any XHSTT solver. This
flexibility justifies the choice for this format in this work. A brief description
of the format is given in the following subsection.

2.1. XHSTT Format

A XHSTT instance is composed of four entities:

Times: contains information about the times available for allocation. These
times may also be grouped into TimeGroups.

Resources: contains the resources available for assignment. Each resource
has a specific ResourceType. Resources can be also grouped into Re-
sourceGroups.

Events: represents the events to be scheduled. Each event has a duration
(number of times to be occupied) and it demands a set of resources.
Eventually, times and resources may be pre-assigned to events. If these
entities are not pre-assigned, then the solver should be responsible to
make such an assignment. Events also have a workload demand, which
must be considered by its assigned resources. They are also commonly
grouped into EventGroups.
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Constraints: represents the set of constraints that should be satisfied in
a solution for an instance of this problem. Table 1 presents the 16
constraint types available in XHSTT format. Each constraint may be
set as hard or soft. The infringement of a hard constraint implies in
infeasibility, while the soft constraints measure the quality of feasible
solutions (smaller values indicate better solutions). Each constraint
also has a cost, which expresses the penalty for a single violation, and
a cost function, which defines how violations are penalized in the ob-
jective function. Detailed description of this format can be found in
Post et al. [3] and Kingston [19].

Table 1: Different constraint types in the XHSTT format [20].

Constraint Description
Assign Resource Event should be assigned a resource
Assign Time Event should be assigned a time
Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group
Avoid Split Assignments Set of events should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time
Order Events Set of events should be ordered
Avoid Clashes Resource’s timetable should not have clashes
Avoid Unavailable Times Resource should not be busy at unavailable times
Limit Idle Times Resource’s timetable should not have idle times
Cluster Busy Times Resource should be busy on a limited number of days
Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource’s total workload should be limited

3. Hybrid Algorithm

The proposed hybrid algorithm is composed of three sequential steps: (i)
the KHE solver [9, 19] is employed to generate an initial solution; (ii) a
VNS algorithm, with six neighbourhood structures, is employed to improve
this solution as much as possible, until stagnation, and; (iii) a matheuristic
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method is employed to provide fine improvement of the current solution until
timeout condition is reached. It is considered that VNS stagnates when it
reaches one tenth of the available time without obtaining any improvement.
A basic scheme of the proposed approach can be seen in Figure 2. The main
parts of the method are discussed in the next sections.

KHE Solver
- Structural Phase
- Time Assignment Phase
- Resource Assignment Phase 

VNS
- Event Swap
- Event Move
- Event Block Move
- Resource Swap
- Resource Move
- Kempe Move

Matheuristic
- Build Model
- Select and unfix variables
- Solve Model

Instance File

Initial Solution (s)

Best VNS Solution (s*)

Final Solution

Figure 2: Scheme of the proposed approach.

3.1. KHE Solver

The Kingston High School Timetabling Engine is a platform for handling
instances of HST. It also provides a solver, which is used in this work to
generate initial solutions since it can find acceptable assignments in short
time [19]. KHE generates a solution through three steps: structural phase,
time assignment phase and resource assignment phase. For sake of brevity,
only a brief description of the method is provided below. For additional
information, please refer to [9, 19].

At the beginning of the structural phase, an initial solution is built with
no times or resources assigned. In this step, events are split into sub-events,
whose durations depend on split event constraints, and the sub-events (or
meets) are grouped into sets called nodes. Sub-events derived from the same
event are nested in the same node. Sub-events whose original events are
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connected by spread events or avoid split assignment constraints also lie in
the same node. Events connected by link event constraints have their meets
connected in such a way that the time assigned to one of these meets is
also extended to the other connected meet. Each meet also contains a set
of times called time domain, which defines the times that could be assigned
to the meet. Time domains are chosen based on preferred time constraints.
A meet contains one task for each demanded resource in the event that it
was derived from. Each task also contains a set of resources of the proper
type called resource domain. The resources available in resource domain are
based on preferred resource constraints [9]. Pre-assigned times and resources
are also assigned in this step.

In time assignment phase, a time is assigned to each meet. At first, a layer,
which is a set of nodes containing meets preassigned to a given resource, is
built for each resource in which a hard avoid clash constraint applies. Then,
the layers are sorted in such a way that the hardest layers (layers with less
available choices for assignment) come first, and the times are assigned to
the meets of each layer, one by one. This assignment is made through a
minimum-cost matching between meets of a given layer and times. Each
edge of the graph has a cost proportional to the impact of this assignment
on the objective function.

Finally, the resources are assigned in the resource assignment phase. For
each resource type, one of two procedures is executed: (i) if the resource
assignment for this resource type is constrained by avoid split assignment
constraints, a resource packing algorithm is invoked; (ii) otherwise, a simple
heuristic is used. These two procedures can be described as follows:

• The packing of a resource consists in assigning tasks to the resource
in such a way that the solution cost is kept as low as possible. It is
accomplished through maximum use of the resource, under its workload
limits. The resources are placed in a priority queue, in which more
demanded resources are prioritized. At each iteration, a resource is
dequeued and processed.

• The simple heuristic consists in assigning the resource that minimizes
the objective function for each task, from the most constrained to the
least constrained.

It is possible to estimate the number of tasks whose resource assignment is
infeasible through a maximum matching in an unweighed bipartite graph
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(tasks are demand nodes and resources are supply nodes).

3.2. Variable Neighborhood Search

The original Variable Neighborhood Search algorithm was proposed by
Mladenovic and Hansen [21]. It consists in a local search method that ex-
plores the search space by making systematic changes in the neighborhood
structure. Algorithm 1 presents the implementation of VNS used in this
work. Initially, neighbourhood 1 is selected (line 2). Afterwards, at each
iteration, a new neighborhood function k is selected according to a pre-
established order. A random neighbor s′ is generated using this neighborhood
(line 4) and a descent method is applied to s′ (line 5). If the best solution
found by the descent method s′′ is better than the best known solution s
(line 6), then s′′ replaces s and the first neighborhood structure is chosen to
continue the search (lines 7 and 8). Otherwise, the algorithm switches to the
next neighborhood structure (line 10), and the search continues. The process
ends when the stop condition is met.

Algorithm 1: Basic Structure of the VNS algorithm

Input: Initial solution s.
Output: Best solution s found.

1 while stopping criterion is not met do
2 k ← 1;
3 while k ≤ kmax do
4 s

′ ← RandomNeighbor(Nk(s));

5 s
′′ ← descentMethod

(
s
′)

;
6 if f(s′′) ≤ f(s) then
7 s← s

′′
;

8 k ← 1;

9 else
10 k ← k + 1;

11 return s;

The VNS algorithm employed in this work for improving KHE solutions
is the one proposed in [8]. It is a variant of the original algorithm called
Skewed VNS, originally proposed in [22]. This variant employs a relaxed
rule to accept the candidate solution s′′, as shown in equation (1).
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f(s′′)− α× ρ(s, s′′) ≤ f(s) (1)

where α is a predefined parameter and ρ(s, s′′) is the distance between s and
s′′.

Therefore, it becomes possible to accept a new solution that is worse than
s if the distance between this solution and s is large enough to trigger the
update condition. Finally, the distance between the solutions is evaluated
using the distance metric considered in [8].

Random Non-Ascendent (RNA) movements, with a stopping criterion of
1,000,000 consecutive iterations without improvement, was used in the decent
phase. This is justified by the fact that the union of several neighborhood
functions usually generates a very large search space, composed of many flat
landscapes. At each iteration, the decent method randomly selects one of six
neighborhood functions and generates a neighbor. If the neighbor complies
with the update rule, then it is accepted.

The following neighborhood functions are considered:

• Event Swap (es).

• Event Move (em).

• Event Block Move (ebm).

• Resource Swap (sw).

• Resource Move (rm).

• Kempe Move (km).

The selection of the neighborhood function is done according to a given
set of probabilities. If the instance requires the assignment of resources (i.e.
there is at least one Assign Resource constraint), then the probabilities are:
p(es) = 0.20, p(em) = 0.38, p(ebm) = 0.10, p(rs) = 0.20, p(rm) = 0.10
and p(km) = 0.02. Otherwise, the neighborhood functions rs and rm
are not used, and the probabilities become: p(es) = 0.40, p(em) = 0.38,
p(ebs) = 0.20 and p(km) = 0.02. These values were adjusted based on ex-
perimentation. A description of the six neighborhood functions employed is
given in the next subsection.
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3.2.1. Neighborhood Structure

The neighborhood structure N(s) considered is composed of six moves
(or neighborhood functions)1. This neighborhood structure is very similar
to the one proposed by the winner of ITC2011 [4, 23], except that the move
Permute Resources was removed. This move is computationally expensive
and it does not provide significant improvement on the candidate solutions.
The considered functions are presented in sequence.

1. Event Swap (es) Two events e1 and e2 are selected and their times t1
and t2 are swapped. Figure 3 presents an example of this move.

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

ES(Geog , Eng )3 5

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Eng5 Span1 Geog3

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

Figure 3: Example of Event Swap [4].

2. Event Move (em)
An event e1 is moved from its original time t1 to an empty time t2.
Figure 4 presents an example of this move.

3. Event Block Swap (ebs)
Similarly to es, the Event Block Swap swaps the times of two events
e1 and e2. However, if the events have different durations, e1 is moved
to the last time occupied by e2. This move allows time swaps without
losing the allocation contiguity. Figure 5 presents an example of this
move. When the events are not contiguous, this move works exactly as
Event Swap.

4. Resource Swap (rs)
The resources r1 and r2, assigned to events e1 and e2, are swapped.
Such an operation is only allowed if the resources r1 and r2 are of the

1In terms of notation, a neighborhood function k is denoted by Nk(s).
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EM(Chem , Sex_5)3

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 Chem3 His2 His3

Mon Tue Wed Thu Fri

Math1 Eng1 Math4 Phis1 Eng3

Math2 Eng2 Math5 Phis2 Eng4

Math3 Chem1 Geog3 Span1 Eng5

Geog1 Chem2 His1 Span2 Phis3

Geog2 His2 His3 Chem3

Figure 4: Example of Event Move [4].

EBS(Span , Math )1 1

Mon Tue Wed Thu Fri

Span1 Eng1 Math3 Phis1 Eng3

Math1 Eng2 Math4 Phis2 Eng4

Math2 Chem1 Geog3 Span2 Eng5

Geog1 Chem2 His1 Span3 Phis3

Geog2 Chem3 His2 His3

Mon Tue Wed Thu Fri

Math1 Eng1 Math3 Phis1 Eng3

Math2 Eng2 Math4 Phis2 Eng4

Span1 Chem1 Geog3 Span2 Eng5

Geog1 Chem2 His1 Span3 Phis3

Geog2 Chem3 His2 His3

Figure 5: Example of Event Block Swap [4].
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same type (i.e. both have to be teachers). Figure 6 presents an example
of this move.

ES(Geog , His )3 4

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Arnald

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Kate

Figure 6: Example of Resource Swap [4].

5. Resource Move (rm)
The resource r1, assigned to an event e1, is replaced by a new resource
r2, randomly selected from the available resources that can be used to
attend e1. Figure 7 presents an example of this move.

6. Kempe Move (km)
Two distinct times t1 and t2 are selected. The events assigned to times
t1 and t2 are listed and represented as nodes in a graph. If two nodes
(events) n1 and n2 share resources, they are connected by an edge.
Edges are created only between nodes assigned in distinct times. There-
fore, the generated graph is bipartite, and it is known as conflict graph.
Every edge in the conflict graph has a weight, which is the cost differ-
ence in the objective function assuming the exchange of times between
the events in the pair (n1, n2). Afterwards, the method looks for the
lowest cost path in the conflict graph and it makes the exchange of
times in the chain. This procedure is similar to the one proposed by
Tuga et al. [24]. Figure 8 presents an example of this move.

3.3. Matheuristic

Matheuristics are heuristic algorithms made by the cooperation between
metaheuristics and mathematical programming methods (MP) [25, 26, 27].
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Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Mark

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

RM(Span , Jane)1

Brandon

Judith

Jane

Mon Tue Wed Thu Fri

Math1

   Smith

Eng1

   Anne

Math4

   Smith

Phis1

   Laura

Eng3

   Anne

Math2

   Smith

Eng2

   Anne

Math5

   Smith

Phis2

   Laura

Eng4

   Anne

Math3

   Smith

Chem1

   John

Geog3

   Kate

Span1

   Jane

Eng5

   Anne

Geog1

   Kate

Chem2

   John

His1

   Arnald

His3

   Arnald

Phis3

   Laura

Geog2

   Kate

Chem3

   John

His2

   Arnald

His4

   Arnald

Brandon

Judith

Mark

Figure 7: Example of Resource Move [4].

In integrative matheuristic model, metaheuristics are incorporated inside ex-
act algorithms or vice-versa [28].

In the proposed approach, a metaheuristic works at the master level,
controlling low level local search procedures. These local searches are reduced
Integer Programming (IP) models, in which a subset of variables is fixed to
the current values in the incumbent solution, and the remaining variables of
the model can be freely modified by the IP solver. The IP model will be
presented in the following subsection. Afterwards, the algorithm that was
built based on this model is described.

3.3.1. Integer Programming Formulation

The IP formulation considered in this work was recently proposed by
Kristiansen et al. [11]. This model is able to handle any XHSTT instance.
For sake of brevity, only the input data, the basic variables, and some cons-
traints of the formulation are described here. The complete formulation can
be found in the original reference.

The input data for this formulation is a set of times T , a set of time
groups TG, a set of resources R, a set of resource groups RG, a set of events
E, a set of event groups EG, and a set of constraints C. An event e ∈ E
has a duration de ∈ N, and a number of event resources, each one denoted
as er ∈ EventRes(e). An event resource defines the demand of a given
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Mon2

1Math

2Geog

3   Phis

4
Eng

Wed4

1Geog

2 His

3Eng

4
 Span

Mon2

3   Phis

5
Chem

Wed4

3Eng

4 Eng

KC(Mon , Wed )2 4

5
   Span

5
Chem 4

  Span
5Span

Legend:

Class
Lesson

Conflict Class
Lesson

Best chain found

1Math

2Geog

1Geog

2 His

Figure 8: Example of Kempe Move [4].

resource for the respective event. This resource can be pre-assigned or not,
and, if it is not pre-assigned, to assign a resource of the proper type becomes
solver responsibility. Furthermore, an event resource er can undertake a
specific roleer in event e, which is used to link the event resource to certain
constraints. Generally, an event has to be split into sub-events, whose sum
of durations matches the duration of the original event. This formulation
creates the “full set” of sub-events se ∈ SE with different lengths, such that
all possible combinations of sub-events for a given event can be handled. For
example, an event of duration 4 generates a set of possible sub-events of the
following durations: 1, 1, 1, 1, 2, 2, 3 and 4.

Variable xse,t,er,r ∈ {0, 1} assumes value 1 if sub-event se ∈ SE is assigned
to start time t ∈ T and resource r ∈ Resources(er) is assigned to event
resource er ∈ EventRes(se), or 0 otherwise. To reduce the amount of non-
zeros in the IP model, three auxiliary variables are introduced: (i) binary
variable yse,t assumes value 1 if sub-event se ∈ SE is assigned to start time
t ∈ T ; (ii) variable vt,r ∈ N denotes the number of times that resource r ∈ R

14



is used in time t ∈ T ; (iii) binary variable wse,er,r ∈ {0, 1} is 1 if sub-event
se ∈ SE is assigned to resource r ∈ R for event resource er ∈ EventRes(se),
or 0 otherwise.

Each constraint c ∈ C applies to a set of events, resources or event groups,
called its points of application p ∈ AppliesTo(c). The points of application
should be interpreted in an abstract way: p may represent an event e, a
resource r or an event group eg. The number of violations is given by slack
variables sconstypec,p ∈ N. This slack variable is calculated differently for each
constraint present in XHSTT. In the following, three XHSTT constraints are
presented. The formulation of the remaining constraints can be found in [11].
Let set Cconstype ⊂ C denotes all constraints of a certain type:

Assign Time : The assign time constraint penalizes sub-events in which
times are not assigned. Slack variable sassigntime

c,e represents the total
duration of those sub-events derived from the specific event in which a
time is not assigned.

de−
∑

t∈T,se∈SubEvents(e)

dse×yse,t = sassigntime
c,e ∀c ∈ Cassigntime, e ∈ AppliesTo(c)

(2)

Avoid Unavailable Times : An avoid unavailable times constraint speci-
fies that certain resources are unavailable for any event at certain times.
Slack variable sunavailabletimes

c,r denotes the number of unavailable times
that a resource is attending events. Let t ∈ UnavailableT imes(c) de-
note that t is an unavailable time for constraint c ∈ Cunavailabletimes.∑
t∈UnavailableT imes(c)

qr,t = sunavailabletimes
c,r ∀c ∈ Cunavailabletimes, r ∈ AppliesTo(c)

(3)

Avoid Clashes : These constraints specify that certain resources should
not have clashes, which means they should not be assigned to two
or more resources simultaneously. The constraint produces a set of
deviations for each resource. For each time, the number of occurrences
of given resource minus one is calculated to estimate the deviation
(savoidclashesc,r,t ) of that resource for that time.

vt,r − 1 ≤ savoidclashesc,r,t ∀c ∈ Cavoidclashes, r ∈ AppliesTo(c), t ∈ T (4)
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The objective function penalty for each constraint is calculated according
to its weight wc ∈ N, number of violations sconstypec,p ∈ N, and cost function
type CostFunction. There are three types of cost function in XHSTT: linear,
quadratic and step. The most common is the linear one, which is calculated
as follows:

f(sconstypec,p ) = wc ×
∑

p∈AppliesTo(c)

sconstypec,p . (5)

Given the definition of all constraint types of XHSTT, and their respective
slack variables, the objective of the model is stated as to minimize z, as shown
in (6).

z = f(sassignresc,er ) + f(sassigntime
c,e ) + · · ·+ f(slimitworkload

c,r ) (6)

The differentiation between hard and soft constraints is handled as fol-
lows:

1. If the input solution to the matheuristic has any hard constraint vio-
lation:

(a) Load the model with hard constraints only;
(b) Solve the model with regard to hard constraints;
(c) If the matheuristic achieves a solution that does not violate any

hard constraint:

i. Include the soft constraints in the model;
ii. Include a constraint which states that the cost of hard con-

straint violation cannot increase (zhard = 0);
iii. Solve the model with regard to soft constraints.

2. Otherwise:

(a) Load the full model;
(b) Include a constraint which states that the cost of hard constraint

violation cannot increase (zhard = 0);
(c) Solve the model with regard to soft constraints.

3.3.2. Algorithm

The main idea of the algorithm is similar to the one proposed in Sorensen
and Stidsen [15]. Considering that X represents the set of xse,t,er,r variables,
s represents the current solution and n(.) a neighbourhood function, the
proposed matheuristic is presented in Algorithm 2.

16



Algorithm 2: Proposed matheuristic

Input: XHSTT instance P , initial solution s, number of resources n,
maximum of optimal iterations per neighborhood size optMax.

Output: Best solution s found.
1 M ← load IP model;
2 X ← load values for variables from s;
3 optInARow ← 0;
4 while elapsedT ime < timeout do
5 V ← ∅;
6 count← 0;
7 while count < n do
8 randomly select a resource ρ;
9 foreach variable xse,t,er,r ∈ X do

10 if r = ρ then
11 V ← V ∪ {xse,t,er,r};

12 count← count + 1;

13 fix variables X \ V to their current value;
14 s← invoke IP solver with short time limit;
15 if IPSolverStatus = OptimalSolution then
16 optInARow ← optInARow + 1;
17 if optInARow = maxOpt then
18 n← n+ 1;

19 else
20 optInARow ← 0;
21 if n > 1 then
22 n← n− 1;

23 release fixed variables;

24 return s;
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The algorithm takes as input an instance of XHSTT problem, an initial
solution s and two parameters: the number n of resources to have their vari-
ables freed per iteration and the maximum of consecutive iterations achieving
the optimal solution before increasing the neighborhood size optMax (line
2). This initial solution was obtained by the VNS algorithm. In line 5, an
empty set (list) of variables is created. While the number n of resources was
not selected yet, a resource ρ is randomly selected (line 8); then, for each
variable xse,t,er,r ∈ X, if the resource r in xse,t,er,r is the same as the selected
resource ρ, the variable xse,t,er,r is added to set V . In line 13, all variables
except the selected ones have their values fixed. In line 14 the IP solver is
invoked with a small time limit. After that, the neighborhood size is adjusted
if necessary (lines 15 to 22) and all variables are freed for the next iteration
of the algorithm (line 23).

The number of resources n to be selected per iteration was set as 5 as
well as the maximum of consecutive iterations achieving the optimal solution
before increasing the neighborhood size optMax. In line 14, a short limit of
a tenth of the total available time was considered for each iteration. Usually
the IP solver takes only a few seconds per iteration.

Figure 9 presents an example of this IP neighborhood. Suppose a timeta-
bling problem with one class (5th grade) and three teachers (John, Kate and
Luke). Consider also that it is not desirable for teachers to be involved in
lectures for more than two days. In this example, resources John and Kate
are randomly selected to have their schedule optimized at this iteration. Fig-
ure 10 presents the results after solving the IP model with these variables set
free. Note that it would be hard to remove this constraint violation through
the VNS neighborhoods, a large and unlikely chain of Event Swap moves
would be required.

It is important to mention that alternative methods of selecting which
variables should be freed at each matheuristic iteration were also explored,
more precisely: (i) all variables from a given time group (e.g. all variables
from Monday); (ii) all variables from a set of randomly selected times (e.g.
all variables from Monday 3, Tuesday 1, Friday 2 and Friday 3); (iii) all
variables from a set of randomly selected events; and (iv) a percentage of the
variables of the IP model, at random. These alternative neighborhoods are
not presented in this paper since they led to worse results when compared
with the resource neighborhood. In addition, it is very hard to adjust the
neighborhood size properly in those cases.
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Cluster busy times violation: More that two working days for John and for Kate

Figure 9: Example of resource optimization IP neighorhood.
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Figure 10: Solution timetables after the optimization of the resources selected in Figure
9.
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4. Computational Experiments

Experiments were performed on an Intel R© i7 4510-U 2.6 Ghz PC with
8GB of RAM under Ubuntu 12.04 operating system. The software was coded
in C++ and compiled with GCC 4.6.1. The obtained results were validated
with the HSEval validator2. An academic version of Gurobi 6.5.1 was used
to solve IP models.

The results are represented by the pair (H,S), where H and S denote
the cost of hard and soft constraint violations, respectively. When hard-
constraints are not violated, only the cost of soft-constraint violations is
reported. Our solver, along with our solutions and reports, can be found at
the GOAL-UFOP website3. We invite the interested reader to validate our
results.

4.1. Results

The goal of the first experiment was to estimate the performance of the
proposed Hybrid Solver on a scenario similar to the one of the ITC2011
competition. Therefore, the instances of the competition were considered4.
In addition, the same rules were applied: the time limit was adjusted to be
equivalent to 1,000 seconds in the benchmark provided by the organizers and
the number of available threads was set to 1.

Regarding the ranking procedure, each algorithm was executed 5 times
for each instance and the average result was recorded. Each solver received a
ranking on each instance, from 1 (best) toN (worst), according to the average
costs obtained (N is the number of algorithms compared). The solver with
the smaller average rank is considered as the winner.

VNS algorithm [8] was used as benchmark because, to the best of authors’
knowledge, it has the best average performance on these instances. Since only
two algorithms were considered for comparison, they were ranked as 1 or 2
on each instance and the average rank could vary between 1 and 2. The
obtained results are shown in Table 2.

The rankings obtained by VNS and the hybrid solver are a strong evidence
that the hybrid algorithm is superior. To confirm that, an one-sided paired
t-test with 95 % confidence level was conducted. The confidence interval

2http://sydney.edu.au/engineering/it/ and ~jeff/hseval.cgi
3http://www.goal.ufop.br/softwares/hstt
4https://www.utwente.nl/ctit/hstt/archives/XHSTT-ITC2011-hidden/
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Table 2: Average solution costs for Standalone VNS and Hybrid solvers.

Instance Standalone VNS [8] Hybrid Solver
BrazilInstance2 29.0 5.8
BrazilInstance3 104.8 31.2
BrazilInstance4 (6.4, 110.6) 63.6
BrazilInstance6 121.0 51.6
FinlandElementarySchool 3.0 3.0
FinlandSecondarySchool2 0.0 0.0
Aigio1stHighSchool2010-2011 0.8 0.0
Italy Instance4 50.2 32.2
KosovaInstance1 13.8 9.0
NetherlandsKottenpark2003 1384.8 1257.8
NetherlandsKottenpark2005A (13.8, 6950.8) (14.4, 5677.8)
NetherlandsKottenpark2008 (15.4, 31039.4) (15.0, 68015.2)
NetherlandsKottenpark2009 (11.0, 12197.0) (11.8, 11545.0)
Woodlands2009 (6.6, 0.0) 57.8
Spanish school 963.6 474.8
WesternGreeceUniversity3 5.0 5.6
WesternGreeceUniversity4 5.2 5.0
WesternGreeceUniversity5 0.0 0.0
Ranking 1.75 1.25
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[−∞,−0.17] and the p-value of 4.3 × 10−3 corroborate the statement that
the hybrid algorithm is better than the standalone metaheuristic.

For some instances on which VNS only obtained infeasible solutions, the
proposed algorithm was able to find feasible solutions. This is the case for
BrazilInstance4, KosovaInstance1 and Woodlands2009. However, both algo-
rithms could not reach feasible solutions on Dutch instances. Future work
will focus on understanding and overcoming this limitation.

For the Ducth instances, the matheuristic was not even invoked for most
executions, since the metaheuristic phase did not reach the stagnation con-
dition within the time limit. It explains the similar performance achieved by
both approaches for this set of instances (see Table 2).

4.2. Improving Best Known Solutions

The 25 instances of the XHSTT-2014 archive5 were used to estimate the
efficiency of the algorithm when larger processing times are available. This
set was considered because its best known solutions are continuously updated
by the community. In these tests, the Hybrid Solver was allowed to run for
36,000 seconds and two combinations were considered:

HS–BNS: Hybrid Solver is applied considering the current best known so-
lution as the initial solution.

HS–KHE: Hybrid Solver is applied considering the KHE solution as the
initial solution, as the previous experiment.

On the one hand, the intention behind testing the HS–BNS is to evaluate
the refinement capacity of the proposed algorithm. This setup is particu-
larly useful if good solutions are available, such as the scheduling of the last
semester, for example. On the other hand, HS–KHE is more general since it
applies to cases in which initial solutions are not known a priori.

The results obtained by the two combinations are shown in Table 3. Re-
sults of HS-KHE are split into three columns, KHE, VNS and Math. These
columns contain, respectively, the initial solution generated by KHE, the
best solution found by VNS, and the final solution achieved after applying
the matheuristic. Additionally, the lower bounds (LB) and the current best
known solutions (UB) are also reported in the table. In column HS-BNS and

5https://www.utwente.nl/ctit/hstt/archives/XHSTT-2014/
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sub-column Math (of HS-KHE), results which are better than the current
best known solutions are highlighted in bold. Results marked with a dash ‘-’
are already optimal and, therefore, they cannot be improved.

Table 3: HS–BNS and HS–KHE results
HS–KHE

Instance LB UB HS–BNS KHE VNS Math
AU-BG-98 0 (1, 386) 415 (3, 608) (2, 398) (2, 398)
AU-SA-96 0 24 17 (4, 22) (4, 21) (3, 21)
AU-TE-99 0 125 33 (2, 152) (1, 36) (1, 36)
BR-SA-00 5 5 - 31 22 5
BR-SM-00 51 51 - (8, 117) (3, 99) 52
BR-SN-00 35 35 - 113 104 35
DK-FG-12 285 3310 1514 3411 1669 1668
DK-HG-12 (7, 0) (12, 3124) (12, 2611) (12, 4689) (12, 3371) (12, 3371)
DK-VG-09 (0, 0) (2, 4097) (2, 2718) (2, 4691) (2, 2765) (2, 2765)
ES-SS-08 334 336 336 657 415 351
FI-PB-98 0 0 - 0 0 0
FI-WP-06 0 1 1 19 11 2
FI-MP-06 77 83 77 102 84 77*
GR-H1-97 0 0 - 0 0 0
GR-P3-10 0 0 - 2 0 0
GR-PA-08 0 4 3 11 3 3
IT-I4-96 27 34 27 46 42 27*
KS-PR-11 0 3 3 17 4 0*
NL-KP-03 0 617 420 1371 1151 1103
NL-KP-05 89 1078 784 (15, 10117) (8, 4460) (8, 4460)
NL-KP-09 170 9180 6265 (10, 5125) (8, 8370) (7, 64470)
UK-SP-06 0 (16, 2258) (15, 1892) (66, 3788) (53, 1524) (53, 1524)
US-WS-09 0 697 111 532 124 124
ZL-LW-09 0 0 - (13, 16) 16 0
ZL-WL-09 0 0 - (16, 0) (3, 0) 0

The proposed algorithm showed remarkable results on improving best
known solutions: 15 out of 17 non-optimal solutions of the instance set
considered were improved. New optimal solutions were reached for FI-MP-
06, IT-I4-96 and KS-PR-11. Taking into account the experiments in which
the KHE solutions were used as starting point, one can conclude that the
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achieved solutions are good in several instances, even beating the previous
best known solutions or achieving the optimal solution in some cases. How-
ever, for some datasets, such as the Australian and Dutch instances, the
solver is still not very efficient.

Finally, it should be noticed that the time spent on optimization (10
hours) is not critical in many applications since the schedule can be performed
weeks, or even months, before the beginning of the semester.

5. Concluding Remarks

This paper presented a hybridization of metaheuristics and matheuris-
tics for timetabling problems. This hybridization was little explored in the
literature and achieved remarkable results, surpassing by far the standalone
metaheuristic algorithm. Aiming to improve the current best known so-
lutions, the proposed algorithm achieved remarkable results: 15 out of 17
solutions were improved through this new approach.

Future work will focus on investigating smarter ways of selecting the free
variables in the matheuristic. Other possible future works are (i) to improve
the existing mathematical programming formulation for XHSTT, and; (ii) to
make a deeper study about neighbourhood sizes and ILP based procedures,
such as Local Branching [29] and Relaxation Induced Neighborhoods (RINS)
[30].

Acknowledgment

The authors would like to thank the Brazilian agencies CAPES, CNPq,
and FAPEMIG for the financial support.

References

[1] M. R. Garey, D. S. Jonhson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, San Francisco, CA, USA,
1979.

[2] G. Post, L. Di Gaspero, J. Kingston, B. McCollum, A. Schaerf, The third
international timetabling competition, Annals of Operations Research
(2013) 1–7.
URL http://dx.doi.org/10.1007/s10479-013-1340-5

24



[3] G. Post, J. Kingston, S. Ahmadi, S. Daskalaki, C. Gogos, J. Kyngas,
C. Nurmi, N. Musliu, N. Pillay, H. Santos, A. Schaerf, XHSTT: an XML
archive for high school timetabling problems in different countries, An-
nals of Operations Research 218 (1) (2014) 295–301. doi:10.1007/s10479-
011-1012-2.
URL http://dx.doi.org/10.1007/s10479-011-1012-2

[4] G. Fonseca, H. Santos, T. Toffolo, S. Brito, M. Souza, GOAL solver: a
hybrid local search based solver for high school timetabling, Annals of
Operations Research (2014) 1–21.
URL http://dx.doi.org/10.1007/s10479-014-1685-4

[5] M. Sørensen, S. Kristiansen, T. Stidsen, International Timetabling Com-
petition 2011: An Adaptive Large Neighborhood Search algorithm,
2012, pp. 489–492.

[6] A. Kheiri, E. Ozcan, A. J. Parkes, HySTT: Hyper-heuristic search strate-
gies and timetabling, in: Proceedings of the ninth international con-
ference on the practice and theory of automated timetabling (PATAT
2012), 2012, pp. 497–499.

[7] J. Romrös, J. Homberger, An evolutionary algorithm for high school
timetabling, PATAT ’12 Proceedings of the 9th International Conference
on the Practice and Theory of Automated Timetabling, 2012.

[8] G. H. Fonseca, H. G. Santos, Variable neighborhood search based
algorithms for high school timetabling, Computers & Operations
Research 52, Part B (0) (2014) 203 – 208, recent advances in Variable
neighborhood search.
URL http://www.sciencedirect.com/science/article/pii/

S0305054813003328

[9] J. H. Kingston, KHE14: An algorithm for high school timetabling, in:
10th International Conference of the Practice and Theory of Automated
Timetabling (PATAT 2014), York, United Kingdom, 2014, pp. 26–29.

[10] L. N. Ahmed, E. Ozcan, A. Kheiri, Solving high school timetabling
problems worldwide using selection hyper-heuristics, Expert Systems
With Applications, in review.

25



[11] S. Kristiansen, M. Sørensen, T. Stidsen, Integer programming for the
generalized high school timetabling problem, Journal of Scheduling
(2014) 1–16.
URL http://dx.doi.org/10.1007/s10951-014-0405-x

[12] S. Pirkwieser, G. R. Raidl, Matheuristics for the periodic vehicle routing
problem with time windows, Proceedings of matheuristics (2010) 28–30.

[13] F. Della Croce, A. Grosso, F. Salassa, A matheuristic approach for the
total completion time two-machines permutation flow shop problem, in:
P. Merz, J.-K. Hao (Eds.), Evolutionary Computation in Combinatorial
Optimization, Vol. 6622 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2011, pp. 38–47.
URL http://dx.doi.org/10.1007/978-3-642-20364-0_4

[14] H. G. Santos, T. A. Toffolo, R. A. Gomes, S. Ribas, Integer program-
ming techniques for the nurse rostering problem, Annals of Operations
Research (2014) 1–27.
URL http://dx.doi.org/10.1007/s10479-014-1594-6

[15] M. Sørensen, T. R. Stidsen, Hybridizing integer programming and meta-
heuristics for solving high school timetabling, 10th International Con-
ference on the Practice and Theory of Automated Timetabling (2014)
557–560.

[16] A. Colorni, M. Dorigo, V. Maniezzo, Metaheuristics for high school ti-
metabling, Computational optimization and applications 9 (3) (1998)
275–298.
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